If it's not what You are looking for type in the equation solver your own equation and let us solve it.
175y^2=525y
We move all terms to the left:
175y^2-(525y)=0
a = 175; b = -525; c = 0;
Δ = b2-4ac
Δ = -5252-4·175·0
Δ = 275625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{275625}=525$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-525)-525}{2*175}=\frac{0}{350} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-525)+525}{2*175}=\frac{1050}{350} =3 $
| |5x+7|=24 | | −2(5x+4)−3x+3=-18 | | 25-4x=15-3x+10-× | | 3(x+4)-4=2(x+40+x | | 9s=3-5s-6 | | -7-6r=35 | | 32t-16t^2=88 | | 2x²-22=50 | | G(x)=1.2(2)+3.2 | | B-8/5=b-3/4 | | (X)+2+(30-x)5=102 | | 2/3s+25=19 | | 32x19=(30+2)x(10+19)= | | -x/5-2=-6 | | -1/2n=-2/3 | | 11x-14=-14+11x | | -7+1/3r=3 | | 6x^2-4x=2x | | -13=-3+f | | 5s-18=7 | | 4(3x-5)=5x+35 | | 4x(3x-5)=5x+35 | | 9z=7z+9 | | -11=a/5 | | w+1/3=5/4 | | |y|-(-1)=7;y=6 | | 4x^2+3x-175=0 | | 3/4k=3/5 | | 3(4c-1)-1=9c+8 | | 5t=7=3t-9 | | (4x+44)+(180-4x+44)=180 | | 20m+34=3m |